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MOTIVATION The exploding popularity of wearable devices, now a multi-billion dollar industry, provides a
new opportunity for real-world data collection. Here, we propose a statistical method for analysis of ambu-
latory wearable-device data that can estimate circadian rhythms. Accounting for circadian rhythms in HR
will allow more accurate measurement of other physiological parameters, e.g., basal HR, how activity in-
creases HR, and changes in HR due to infection.
SUMMARY
Millions of wearable-device users record their heart rate (HR) and activity. We introduce a statistical method
to extract and track six key physiological parameters from these data, including an underlying circadian
rhythm in HR (CRHR), the direct effects of activity, and the effects of meals, posture, and stress through hor-
mones like cortisol. We test our method on over 130,000 days of real-world data from medical interns on
rotating shifts, showing that CRHR dynamics are distinct from those of sleep-wake or physical activity pat-
terns and vary greatly among individuals. Ourmethod also estimates a personalized phase-response curve of
CRHR to activity for each individual, representing a passive and personalized determination of how human
circadian timekeeping continually changes due to real-world stimuli. We implement ourmethod in the ‘‘Social
Rhythms’’ iPhone and Android app, which anonymously collects data from wearable-device users and pro-
vides analysis based on our method.
INTRODUCTION

Measurements of heart rate (HR) have become ubiquitous with

the rise of wearables. Many physical processes affect HR,

notably including the circadian rhythm, an internal clock syn-

chronizing physiological functions that has wide-ranging con-

nections to human health. This clock can be tracked by markers

such as dim-light melatonin onset (DLMO), the time at which

secretion of the sleep-regulating hormone melatonin begins,

measured from blood or saliva samples; however, suchmethods

are impractical for large epidemiological studies and rarely used

in clinical practice, given limited availability and lack of insurance

reimbursement. Passive, easy-to-use methods to assess circa-

dian timekeeping, e.g., using wearable-device data, are needed

for population-level studies and to evaluate circadian time-

keeping in real-world situations, to improve schedule design to
Cell Re
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maximize the performance and health of shift workers, and for

the future of chronomedicine (Arendt, 2010; Crowley et al.,

2004; Sahar and Sassone-Corsi, 2009; Walch et al., 2016).

We focus on a rich dataset from an ongoing study of medical

interns (NeCamp et al., 2020). The Intern Health Study includes

over 130,000 days’ worth of data from more than 900 interns

who continuously wore wrist-based sleep-tracking devices col-

lecting motion and HR data for one year. Participants working

both day and night shifts provide data at all possible phases of

circadian misalignment. Demographic information about this

cohort is shown in Figure S1.

We use a simple statisticalmodel to study the daily dynamics of

HR in this dataset. Our model subtracts the effect of activity

(Brown and Czeisler, 1992) and discards data obtained during

sleep, which affects HR (Kleitman and Kleitman, 1953; Timmer-

man et al., 1959). We identify both an underlying circadian rhythm
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in HR (CRHR) and a process accounting for short-term dynamics

in HR, such as those regulated by cortisol and other hormonal sig-

nals, relaying information on posture, meals, stress, and other

externalities.

We show that: (1) many properties of the HR rhythms we

extract from wearable devices match those of the rhythms

measured in a constant routine protocol, wherein meals, posture

activity, and sleep are carefully controlled; (2) the CRHR is shifted

by, but does not directly track, cues such as light and sleep, like

other measurements of the human circadian pacemaker; and (3)

ourmethod performs similarly across different devices, including

the AppleWatch, Fitbit, andMi Band.We additionally provide the

‘‘Social Rhythms’’ iPhone and Android app, which anonymously

collects data from users, performs our analysis, and returns a

report detailing changes in the circadian rhythm and other daily

HR parameters over time.
RESULTS

Extracting physiological parameters from heart rate
data
As a baseline, we assume a 24-h background oscillation in HR

with unknown mean, amplitude, and phase (the CRHR). HR in-

creases from this baseline proportionate to activity (steps),

matching existing data (Scheer et al., 2010). Because this effect

varies on the basis of physiology, fitness, and other factors, we fit

a linear HR-per-step effect of activity separately for each individ-

ual. For robustness, we remove data during sleep and short in-

terruptions (less than 2 h) in themiddle of longer periods of sleep.

This yields a final model for HR at hour t during wakefulness:

HRt = a� b,cos
� p

12
ðt� cÞ

�
+d,Activity + εt;

where a is the basal HR in beats per minute (bpm), b is the ampli-

tude of a 24-h circadian oscillation in HR (which might be 0 if

such an oscillation does not exist), c is the time of the circadian

HR minimum (i.e., circadian phase), d is the increase in HR per

unit activity (steps), and εt is the model error.

The error εt should include two known effects. First, optical

HR measurements from devices worn on the wrist have limited

accuracy (Wang et al., 2017). Second, many external factors

affect HR: on the hour timescale, HR is affected by cortisol

and other hormones (Becker and Rohleder, 2019), which are

in turn driven by a range of stimuli, including prolonged stand-

ing (Liu et al., 2010; MacWilliam, 1933), meals (Fagan et al.,

1986; Sauder et al., 2012), awakening (Smyth et al., 2015), light

(Jung et al., 2010), and stress (Buckert et al., 2014). These ef-

fects can be increased by caffeine intake (Lovallo et al.,

2006), and can vary with gender, meal content and size, type

and severity of stress, and postural change. Exercise by itself

does not increase cortisol (Lovallo et al., 2006), so these effects

are distinct from the direct effect of cardiac demand modeled

by the parameter d.

To account for these effects, we assume the noise εt at time t

follows a common statistical error model known as an AR(1)

process:
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εt + 1 = kεt +N
�
0;s2

�
;

i.e., the noise at time t + 1 carries over a fraction k of the noise at

time t (representing the ongoing effects of external factors on

HR) plus independent Gaussian noise with standard deviation

s (representing measurement error and new external effects).

This yields six parameters (basal HR in a, circadian oscillation

in b and c, activity in d, measurement error in s, and other dy-

namics in k), which must be fit directly from the data. In practice,

we find that s and k are consistent across both days and individ-

uals, corresponding to a measurement error of roughly ±15 bpm

and a correlated error process on the timescale of approximately

1 h, respectively. The six parameters of our model are the

simplest possible way to account for the properties we have

discussed.

We average HR and steps data into 5-min bins, and section

the data into ‘‘days’’ (periods of wakefulness that are separated

by periods of sleepmore than 2 h in length). We then fit ourmodel

to 2-day intervals centered at the period of sleep in between, al-

lowing direct comparison between our phase parameter c and

the sleep midpoint.

We fit our parameters by using Goodman and Weare’s affine-

invariant Markov chain Monte Carlo algorithm (Goodman and

Weare, 2010), a likelihood-based approach using approximate

sampling that provides error estimates and is not affected by

large gaps in data, such as when devices are charged, which

can bias other approaches such as least squares (Huang et al.,

2019a). The error estimates, which account for the likelihood

that a particular set of parameter values matches the data, are

a key part and a major advantage of our method.

Figure 1A shows the model fit for a 2-day period from a med-

ical intern; the red curve tracks a background 24-h rhythmicity

plus the predicted effect of measured activity. (Given that we

do not use sleep data, nor do we attempt to model the effect

of sleep on HR, the red curve shown during sleep serves only

to help visualize the phase and amplitude of the oscillation and

is unrelated to HR measurements during that period.) This indi-

vidual was working a night shift and slept from approximately

7:30 a.m. to 1:30 p.m., but their CRHR was consistent with a

normal sleep schedule. Like other circadian clocks, the CRHR

can be out of sync with the sleep-wake cycle.

In Figures 1B–1G, we show the fitted parameter values for

136,789 days of Fitbit data obtained from 927 individuals in the

Intern Health Study (Sen et al., 2010). All possible circadian

phase estimates c were occasionally observed, as we studied

a population of shift workers. Circadian amplitudes b were typi-

cally between 1 and 6 bpm. Although other parameters exhibit

variation between days and individuals, all fell within a range of

typical values. Basal HR a was usually between 65 and

85 bpm. The noise parameter k, which appears in Figure 1G,

consistently yielded a correlation time of roughly 1 h, matching

the known dynamics of cortisol. The steps-to-HR parameter,

shown in Figure 1E, consistently measured around 0.3, i.e.,

increasing activity level by 1 step per minute elevated HR by

roughly 0.3 bpm. Small deviations in these parameters could

be used in future studies to identify and characterize illness.
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Parameters were similar across age groups, although our cohort

had a narrow age distribution, and no significant gender differ-

ences were seen (Figure S1, bottom).

To keep computational costs at a manageable level, parame-

ters were fitted by testing only 100,000 probabilistically chosen

possible fits (‘‘samples’’) for each day of data. Increasing the

number of samples for a random subset of 5% of the data did

not significantly affect parameter estimates, but did yield a

modest reduction in error estimates (Figure S2), and circadian

phase had a statistical uncertainty of ±1 h when using 200,000

samples or more. When the computational cost is not as signif-

icant, the number of samples could be increased accordingly.

We now show that the statistical components of Figures 1B–1G

correspond to true physiological properties. Figure 1H shows a

direct comparison ofHR to activity across all individuals. Although

there is significant variation between individuals (shaded region),

which we account for by fitting subjects separately, a consistent

upward trend is seen in the raw data. Figure 1E shows that the

estimated values of d, our model parameter fitting a linear effect

of activity on HR, closely match the slope of this trend. The shape

in Figure 1Hmatches the experimental literature, including a bend

for intermediate activity levels (Tudor-Locke et al., 2019). More

complex models were found to have little influence on the esti-

mated values of other parameters; the linear approximation via

the parameter d captures this relationship well.

Subtracting out the estimated effect of activity and averaging

across all subjects reveals an average 24-h rhythmicity in HR,

shown in Figure 1I, determined by parameters b and c of our

model. Vandewalle et al. measured a similar curve in an experi-

ment under a constant routine protocol, a clinical protocol

wherein activity, sleep, and other factors were carefully

controlled (Vandewalle et al., 2007). Our estimates fromnon-clin-

ical data closely match the amplitude and phase observed by

Vandewalle et al., suggesting that our model’s circadian compo-

nent is capturing a true physical process. (The mean HRs differ

significantly, due to major differences between the constant

routine protocol and our real-world data and differences be-

tween age and athletic ability of subjects, etc. Previous work

has shown that changes in mean HR do not affect the amplitude

or phase of circadian oscillation in HR (Scheer et al., 2010).)

To facilitate the future analysis of data from a wide range of

settings, we created a Wearable Data Analysis Platform

(WDAP, Figure 1J), which collects and processes data anony-

mously submitted by the public through the Social Rhythms
Figure 1. Extracting parameters from wearable data

(A) Model fit (red curve) for 2 days of HR (black dots) and activity (gray curve) from

p.m. on the second day). Days are separated by a period of sleep (white dots)

indicates desynchrony (CRHR phase is advanced compared with the sleep-wak

(B) Fitted mean HR for 2-day periods centered at 133,775 recorded instances of

(C) Fitted HR amplitude (m = 3.9605, s = 1.8609 bpm).

(D) Fitted HR phase (m = 3.3311, s = 4.5492 h).

(E) Fitted effect of activity (m = 0.3205, s = 0.0660 bpm/steps/min).

(F) Fitted independent noise level (m = 6.9159, s = 1.3937 bpm).

(G) Fitted noise correlation between consecutive minutes (m = 0.9339, s = 0.0247

(H) Average increase in HR at different levels of activity (solid curve) with 95% pr

(I) Comparison of 24-h background oscillation in HR estimated by our model (red)

a constant routine (black) (Vandewalle et al., 2007).

(J) Schematic of the Wearable Data Analysis Platform (WDAP), which analyzes u
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app, available for free through the App Store (iOS) and the Goo-

gle Play Store (Android). An application program interface server

transmits anonymous user-submitted data to a processing

server, which analyzes the data by using ourmethod.When anal-

ysis is complete, users view results through the app.

Real-world dynamics of the circadian rhythm in heart
rate
Our statistical model extracts physiological parameters for activ-

ity, circadian effects, measurement noise, and short-term dy-

namics. Notably, we consistently find a 24-h circadian signal in

HR in all subjects, which validates against clinical results ob-

tained in constant routine; that this circadian effect could be iso-

lated from HR data in an uncontrolled setting was not obvious.

This provides a unique opportunity to study the dynamics of

this CRHR in a real-world setting.

Figure 2 shows the circadian phase parameter c, the circadian

minimum of HR, tracked over a period of 2–3 months for 3 indi-

viduals from our dataset (see GitHub repository for more exam-

ples). The phase estimates (red line) with 80% confidence bands

(shaded region) are overlaid on actograms, which use black his-

togram-like bars to show measured activity patterns throughout

the day. When daily routines are consistent, CRHR phase tracks

with sleep.

Major disruptions in daily routine yield a range of behaviors in

CRHR. All three individuals transition through one or more pe-

riods of shift work, when the activity pattern shifts by several

hours between days. In days 1–50, intern A (Figure 2A) slowly ad-

justs to a later schedule, and the CRHR follows. A new shift be-

gins around day 55, yielding a dramatic 7-h shift in activity

pattern; however, the HR clock does not shift, instead following

other consistent cues rather than sleep timing, such as activity,

light exposure, or meals. In contrast, intern B (Figure 2B) adjusts

to new shifts quickly, and the estimated circadian phase swung

dramatically over 3–4 days to match the new sleep schedule.

Intern C (Figure 2C) shows that different responses might be

observed within one individual, and the circadian signal in HR re-

mained consistently out of phase for the first shift (days 10–35)

but gradually adjusted later on. Shift workers use different stra-

tegies to adjust to new schedules; this is, to our knowledge,

the first large-scale continuous measurement of a circadian

marker during these adjustment periods.

Two authors of this study recorded additional data from an Ap-

ple Watch (1,071 days) and a Mi Band (189 days); phase
a medical intern on a night shift. Times are shown in 24-h time (e.g., 36 is 12:00

centered at 10:29 a.m.; the HR clock phase minimum at 4:00 a.m. (±70 min)

e cycle).

sleep (m = 73.5214, s = 8.3588 bpm), with normal fit (red) for visualization only.

).

ediction bands (shaded region).

with the average HRmeasured by G. Vandewalle et al. for n = 8 healthy males in

ser-submitted data.



Figure 2. Dynamics of CRHR in real-world data

(A–C) Actograms for three subjects in the Intern Health Study generated from Fitbit data. Estimated CRHR phase (red, with 80% confidence bands) is overlaid on

daily activity patterns (black). Shown in (A), subject A maintains a consistent CRHR throughout a shifted sleep schedule, whereas (B) subject B quickly adjusts. In

(C), subject C exhibits two distinct responses to different shifts in activity.
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estimates and actograms for these data appear in the supple-

mental information (Figure S3). The Apple Watch author simulta-

neously wore a Fitbit for approximately 200 of the 1,071 days;

phases estimated from the two devices were strongly correlated

(p = 0.00096). Both Fitbit and Apple Watch data suggested that,

for this author, CRHR remained consistent through a period of in-

ternational travel around day 90, which resulted in amajor shift in

activity patterns.

Relationship between CRHR and sleep
Figure 2 shows that the CRHR acts independently and can be

driven significantly out of phase from the sleep cycle. Given

that all data obtained during sleep were discarded, this result

cannot be affected by any effect of sleep on HR. We define the

‘‘phase difference’’ as the difference in hours between estimated

HR phase—the circadian minimum of HR—and the sleep

midpoint (as reported by the device), e.g., a phase difference

of 4 h would indicate that HR is at its lowest 4 h after themidpoint

of sleep. Figure 3A compares each night’s phase difference to

the same individual’s phase difference 2 nights later. On

average, phase difference is close to zero (HR mostly aligns

with sleep), but if the CRHR is out of phase with sleep, it usually

remains that way 2 nights later. Using the partial autocorrelation

function, a statistical tool for looking at correlations over time,

Figure 3B performs a similar comparison up to 15 days into the

future. The correlation (red) remains statistically significant

(outside dotted black lines) out to 2 weeks in the future, although

the magnitude of the correlation falls on the order of 1 week. The

24-h rhythm in HR tends to synchronize with sleep only gradually

over several days (or sometimes not at all).

Figures 3C and 3D show the frequency of average phase dif-

ferences in the Intern Health Study. The range of values we

observe is larger than one would expect from other circadian sig-

nals like DLMO, which are generally more closely aligned with

the sleep-wake cycle (Lewy et al., 1999). For most individuals,

this is the average of hundreds of days of data; it follows that

this phase marker is likely affected by factors other than those
that influence DLMO. The average absolute difference (Fig-

ure 3D), which averages only the magnitude and not the sign

of the phase difference, corroborates this result, although it

also incorporates errors due to uncertainty and shifts in the sleep

schedule (which might temporarily drive the HR clock out of

phase with sleep, even if they are usually synchronous).

A personalized phase-response curve of CRHR
Circadian clocks are often characterized by using phase-

response curves (PRCs), which measure how the clock re-

sponds differently to a stimulus at different times of the day

(Khalsa et al., 2003). This is a defining feature of circadian time-

keeping: the ability to respond differently at different times of the

day strongly suggests the presence of a self-sustained circadian

clock. Such a curve therefore serves as a test of the inherent

timekeeping ability of the CRHR. PRCs can be generated for a

range of stimuli (most commonly, bright light); here, we use ac-

tivity, measured by the wearable device via steps. We previously

removed the acute effects of activity on HR, which occurs on the

timescale of minutes, and now look for the more subtle effect of

how activity could phase shift the circadian rhythm itself, which

would be seen on a much longer timescale of days.

We hypothesized that activity (and related factors, such as

light exposure, which correlate with measured activity) would

be a suitable proxy for the signals that entrain the HR clock;

recent modeling work suggests that activity measurements

can outperform even light measurements in predicting DLMO

(Huang et al., 2019b). To characterize this effect, we calculated

a PRC for each individual (see STAR Methods) to activity. We

found a robust PRC for basically all individuals (Figure 4).

As a first comparison, we calculated the average PRC for all

individuals with at least 50 days of data (Figure 4A). The result

is similar in shape to the PRC to light previously measured for hu-

mans (Khalsa et al., 2003), including a non-zero vertical offset,

which has previously been linked with the non-24-h intrinsic

period of the clock. It also matches a PRC to activity where ef-

fects on melatonin were quantified (Youngstedt et al., 2019).
Cell Reports Methods 1, 100058, August 23, 2021 5



Figure 3. Analysis of phase difference be-

tween midsleep and CRHR

(A) Contour-plot comparison of phase differences

between CRHR phase and sleep midpoint over a

2-day period for n = 133,775 estimated phase

differences from 927 individuals in the Intern

Health Study. When the CRHR is out of phase with

sleep, it is likely to be similarly out of phase in

2 days.

(B) Partial autocorrelation function of phase dif-

ferences; the correlation between phase differ-

ences separated by a certain lag in days (red lines)

remains statistically significant (outside black

dotted lines) out to roughly 1–2 weeks.

(C) Histogram of average phase difference across

all subjects (m = �0.45, s = 2.25 h) with normal fit

(red) for visualization only.

(D) Histogram of average absolute phase differ-

ence across all subjects (m = 3.88, s = 1.56 h),

which includes errors due to uncertainty and

shifting sleep schedules, with normal fit (red) for

visualization only.

Please cite this article in press as: Bowman et al., A method for characterizing daily physiology from widely used wearables, Cell Reports Methods
(2021), https://doi.org/10.1016/j.crmeth.2021.100058

Report
ll

OPEN ACCESS
These comparisons suggest that the primary entrainment signal

for the CRHR is activity, acting in a way similar to how light sig-

nals melatonin.

We also generated individual PRCs for each subject (Figures

4B–4D). Because many tens or hundreds of consecutive daily

measurements of phase are needed to generate these curves,

this would be impractical using DLMO techniques. These

PRCs are completely personalized—they do not use data from

other subjects or from the average ‘‘human clock’’—and yield

consistent shapes across individuals and across devices.

Some characteristics of these individual PRCs have physical

interpretations. For example, human circadian clocks are known

to have a period slightly longer than 24 h (Czeisler et al., 1999;

Hiddinga et al., 1997), so each PRC should have a small vertical

offset corresponding to the difference between the true period-

icity and the fixed 24-h period of the component we extract. Fig-

ure 4E shows a histogram of the resulting estimates of the true

CRHR period (m = 24.03, s = 0.08 h). We reproduce in Figure 4F

the distributions of circadian periods found by a range of clinical

studies (Woelders et al., 2017); our distribution is in line with this

family of distributions, although with somewhat smaller spread.

This could be due to the relatively narrow demographics of our

study (medical interns ages 20–30) or to inherent differences be-

tween the CRHR and other circadian clocks.

The distributions of three other characteristics of these curves

appear in the supplemental information (Figure S4). The sinusoi-

dality of the curve (Figure S4A) is related to the coupling of indi-

vidual cellular oscillators within the suprachiasmatic nucleus

(SCN) (Hannay et al., 2015). The amplitude (Figure S4B) may

reflect conditioning to activity; for example, athletes might
6 Cell Reports Methods 1, 100058, August 23, 2021
have clocks that are less shifted by activ-

ity than sedentary individuals, as their

metabolic demands are different. Finally,

the horizontal shift (Figure S4C) varied

among individuals but was similar to the

spread observed between sleep midpoint
and HR clock phase (Figure 3C). Demographic factors such as

age and gender were not found to have significant effects on

the PRC.

DISCUSSION

We have shown that daily physiological parameters, such as

basal HR and HR circadian phase, can be passively assessed

by using HR and activity measurements from common wearable

devices. We have purposefully checked our method against

several possible confounders to HR. For example, could the

CRHR that we observe reflect patterns of physical activity? First,

we specifically removed the effects of activity through our statis-

tical model. Second, our estimate of CRHR does not follow ac-

tivity, as when activity timekeeping shifts in individuals, CRHR

often does not. Could CRHR reflect sleep-wake patterns? Again,

the timing of the CRHR is distinct from the timing of sleep. Fig-

ure 3 shows that differences between midsleep and CRHR

have temporal dynamics on the scale of days to weeks and

that a mean difference between CRHR and midsleep, measured

for more than a year for many subjects, varies between

individuals.

What about other factors, such as stress, medications, salt

intake, etc., which affect HR? Could disease states influence

these markers? First, it is important to note that the correlated

noise process in our statistical model represents many possible

external effects on HR,most prominently those regulated by hor-

mones such as cortisol. Second, we show that the phase and

amplitude of the rhythms we measure across our population

match closely those found in a constant routine protocol, a



Figure 4. Phase-response curves of CRHR

to activity

(A) Average phase-response curve (red) for all

subjects with at least 50 days of data. Relative time

is hours before/after CRHR minimum (e.g., 5

means 5 h after circadian minimum, usually in the

morning); shift per step is the average phase-

shifting effect of one step at that time (by

convention, negative shifts correspond to phase

delays and positive shifts correspond to phase

advances). When hours of activity are randomly

shuffled, the relationship vanishes (dashed black

line). For ease of visualization, some points are

double-plotted, extending the 24-h curve to a 36-h

plot.

(B) Cloud of individual phase-response curves for

524 Intern Health Study subjects.

(C) Raw PRC data (black, 1-h bins) with parame-

terized fit (red) for the Mi Band dataset (189 days).

(D) Raw PRC data with parameterized fit for the

Apple Watch dataset (1,071 days).

(E) Histogram of the CRHR periods suggested by

the vertical offset of each PRC (m = 24.03, s = 0.08

h), with normal fit (red) for visualization only.

(F) Reproduced distributions of periods of circa-

dian clocks found by forced desynchrony studies

(Woelders et al., 2017).
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protocol that is explicitly designed to control such effects. Our

ability to capture this circadian signal from real-world data is a

major benefit for population-level studies, although a carefully

designed clinical study could also attempt to control these ef-

fects directly. We note that even clinical studies using the con-

stant routine protocol suffer from effects such as sleep depriva-

tion, and other authors have raised questions about using

methods so dissimilar to real life, particularly when measuring

HR (Kerkhof et al., 1998; Duffy and Dijk, 2002). That our method

is built on real-world data, which implicitly includes these

external factors, is a selling point, for example, to diagnose dis-

ease (by looking for changes in HR physiology) in a wide

population.

That PRCs (Figure 4) can be generated by using long-term

measurements from wearable devices is a remarkable result.

Traditional PRC protocols are extensive, are costly, and must

pool data frommany (>20) subjects; each data point is the result
Cell Repo
of an individual living in a time isolation

clinic for several days to a week. Over

the course of hundreds of days, with time-

scales achieved only with wearables, we

gain the statistical power to look at activ-

ity at any given time of day and correlate it

to phase shifts in CRHR between one day

and the next. This characterization of an

individual’s circadian clock is important

to a range of applications in personalized

medicine.

Although DLMO is often considered a

gold standard marker of circadian phase,

many have questioned its role in vali-
dating real-world circadian markers. Phase estimates using

core body temperature (CBT), another widely used marker,

correlate only loosely with estimates from DLMO, with a correla-

tion coefficient of less than 0.5 (Komarzynski et al., 2019). High-

carbohydrate meals might shift CRHR and CBT, but not DLMO

(Krauchi et al., 2002). Even melatonin onset and offset show

different dynamics (Liu and Borjigin, 2005), raising questions

about which parts of the melatonin profile are most appropriate

to compare against (Phillips et al., 2019). In animal models simu-

lating jet lag, autonomous circadian clocks in the heart and other

peripheral organs shift at different rates compared with the cen-

tral clock located in the SCN (Damiola et al., 2000; Stokkan et al.,

2001). All of this suggests that CRHR, as a distinct circadian

marker, need not have the same characteristics as othermarkers

such as DLMO.

For normally entrained individuals, we find that CRHR keeps a

constant relationship with sleep, and would therefore generally
rts Methods 1, 100058, August 23, 2021 7
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agree with DLMO. However, we find several features of the

rhythm in HR that are different from what DLMO has predicted.

First, the average phase relationship between our marker and

sleep has more interindividual variation than is found with

DLMO. This suggests that DLMO might act in the body to better

predict sleep, especially because of melatonin’s effects on

sleep, whereas CRHR might time other factors. We see very

similar phase responses by the CRHR to activity and by DLMO

to light, suggesting activity might be the main entraining signal

for HR rhythms. We also see that activity has a greater ability

to generate long-lasting phase shifts in CRHR than in DLMO.

Finally, the period of the CRHR clock might be more tightly regu-

lated than thatmeasured byDLMO (compare Figures 4E and 4F).

These results are exactly in line with physiology. Recently,

the source of the circadian variation in HR was discovered to

be in the sinoatrial (SA) node of the heart, rather than the cen-

tral circadian pacemaker in the SCN, which controls DLMO

(D’Souza et al., 2020). One would then expect that activity

would be a larger signal than light for the CRHR, especially

as the SCN has direct input from the retina. The electrical activ-

ity of the SA node is tightly coupled, whereas the SCN is known

to be less tightly coupled (DeWoskin et al., 2015). Moreover,

specific mechanisms within the SCN allow for period adjust-

ment by photoperiod. Thus, we would reasonably expect that

the period of the SCN would show more interindividual differen-

tiation than that of CRHR. Having the same overall PRC shape

is likely due to the conserved mechanisms of molecular time-

keeping, including having the same molecular input pathway.

HR can be affected by sleep deprivation, whereas DLMO typi-

cally is not, which suggests its role in regulating sleep (Holmes

et al., 2002).

Understanding HR is vitally important because it is a critical

marker of increased risk of cardiovascular disease. Our work

clarifies the expected characteristics of HR on a daily timescale,

including an underlying circadian rhythm and the effects of activ-

ity, potentially leading to more accurate measures of what con-

stitutes a normal or abnormal HR. Our Social Rhythms app and

online platform have already been tested by �2,000 unique

users, opening the possibility of future population-based studies

of physiology predicted by daily patterns in HR.

Limitations of study
The effects of caffeine, psychological stress, disease, pharma-

ceuticals, etc., on HR are not directly accounted for in our

parameter estimates, but could be explicitly included in future

work. Certain types of cardiovascular activity, such as weightlift-

ing and bicycle riding, might affect HR in ways that are not ac-

counted for by the way wearables report activity; use of raw mo-

tion data should be investigated. Sleep as measured by

wearables (used only to discard data during sleep) is not as ac-

curate as that measured in the lab. Proprietary algorithms might

use time-of-day information to score sleep, although non-propri-

etary algorithms exist (Walch et al., 2019). (Our algorithms do not

directly depend on sleep scoring; sleep scoring is used only to

remove sleep data that might bias our estimates.) Finally, we

observe deviations from the linear relationship between steps

and HR, especially as individuals transition from walking to

running. The importance of these differences in measuring our
8 Cell Reports Methods 1, 100058, August 23, 2021
six physiological parameters (if any) should be further

investigated.
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Deposited data

Author Fitbit, Apple Watch, Mi Band data This paper https://github.com/pepperhuang/heartrate
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social-rhythms/id1510826025

MATLAB The MathWorks Inc. https://www.mathworks.com/

Bayes Circadian Phase Code This paper https://github.com/pepperhuang/heartrate

Other

Intern Health Study A prospective cohort study investigating

factors associated with depression during

medical internship.

https://pubmed.ncbi.nlm.nih.gov/
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled when possible by the lead contact, Daniel B.

Forger (forger@umich.edu).

Materials availability
No physical materials were created in association with this study.

Data and code availability
All code used in this study can be found in a publicly available Github repository at https://github.com/pepperhuang/heartrate. The

main algorithm is called from the MATLAB file main.m. Two data sets are provided: 1235 heartrate and steps include the author’s

Apple Watch data, while 100012 HR, Sleep_Stage, and Step include the author’s Fitbit data.

Any additional information required to implement the method of this study is available from the lead contact upon request.

METHOD DETAILS

We estimate CRHR phase using Bayesian uncertainty quantification. To ensure that periods of more frequent measurement do not

disproportionately affect results, heart rate and activity data are averaged into five-minute bins. The Fitbit andMi Band data sets also

include sleep timing, which we use to discard all data obtained during sleep (the AppleWatch data set already had sleep removed, as

the watch was charged overnight). Wakeful periods of less than two hours in the middle of a period of sleep are also discarded. Data

from pairs of consecutive days (centered by a period of sleep) are fit to a 24-hour sinusoidal model with three parameters (phase,

mean, amplitude) plus a linear effect from activity using a scaling parameter. Together with two parameters (correlation, noise)

describing the autoregressive AR(1) error model, six parameters are sampled from the likelihood using Markov chain Monte Carlo

(MCMC). When predicting phase on successive days, the previous day’s fit (plus Gaussian noise with s.d. 1 hour) is used as a prior

distribution, and the posterior is sampled instead of the likelihood. Phase estimates (means) and uncertainties are calculated directly

from this weighted cloud of fits.

Phase response curves are calculated in 24 one-hour bins. For each day of data, we first shift activity by the CRHR phase estimate

from the previous night, so that the timing of activity is when the activity occurred relative to the current circadian phase estimate,

rather than relative to clock time. (Activity occurring at time 0 would be exactly when heart rate is at its minimum – usually during

sleep.) We then bin activity into one-hour bins, with, e.g., the first bin corresponding to all activity that occurred between 0 and 1 hours

after CRHR minimum. The total amount of activity in that bin becomes a value of x; the phase difference between the previous night

and the following night is the corresponding value of y, and so the point (x,y) describes that for one day with x activity at a certain

relative time, we observed a phase shift of y. We record the point (x,y) and to which bin it corresponds. After recording observations
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for all days of data, each bin contains a large number of points (x,y) – one for each day of data. Simple linear regression is used to

estimate the average slope within each bin, which will be the average phase shift per step for all activity during that bin (e.g., between

0 and 1 hour after circadian minimum).

Since our phase estimates used two days’ worth of data (so that intervals are centered at a period of sleep and can be compared to

sleep timing), one concern was that the phase difference from one night to the following night would be biased from being fitted to

overlapping data (the day of heart rate data in between was used in both phase estimates). We separately generated PRCs using

phase changes separate by two or more , which did not have any data in common. As results were almost identical, we kept the

simplest comparison (phase change over 24 hours). When plotting a smooth curve fitted to our 24 one-hour bins, we used nonlinear

least-squares to fit a sinusoidal model with three parameters (phase, mean, amplitude) plus a fourth parameter (trough-to-peak time)

allowing the first and second half-periods to have different lengths.

QUANTIFICATION AND STATISTICAL ANALYSIS

The lines denoting statistical significance in Figure 3 are calculated using the standard method for the full and partial autocorrelation

functions in the MATLAB routines autocorr and parcorr.

The strength of correlation referenced in Figure S3 used a simple linear regression comparing phases estimated using AppleWatch

data with phases estimated using Fitbit data. The stated p-value is the p-value of a hypothesis test for significance in slope.

ADDITIONAL RESOURCES

Intern Health Study portal: https://www.srijan-sen-lab.com/intern-health-study
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